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nopme anemenm 6o muosicecmee OFB%(p,r). U naobopom, ecau npu nexomopom docmamos-
Ho Goavwom ¢ >0 cywecmeyem oeparuuentas nocaedosamenvrocms (N5, pu®) € H x R, s =
=1,2,..., maxas wmo daa nocaedosamesvhocmu z° €D, s=1,2,..., ssremenmo, Komopot Mu-
HUMUSUPYIOM, ¢ MOYHOCMBI €° Mmoduduryuposartyro dyHryuro Jlazparoca L;;;‘f (2, A%, u°), z€D
¢ docmamouno maavimu €% >0, cnpasedausol npedeavhvie coommowenus (1), Mo 6NOAHACTCA
u npedeavnoe coommowenue fO(z%)— B2(p,r), s— 0o. Ipu 5mom 00HOEPEMENHO UMEEM. MECTNO
U npedeavHoe CoOOMHOUEHUE Vpc,gp()\s, p®) — B%p,r), s—o0.

Benmmaunra mrpaduoro koaddunmenta ¢ >0 ompenessercss CBORCTBAMEH ITPOKCUMAJIBLHOTO
cybrpaguenta OFB%(p,r). Ormerum, 4ro mMeloTcss HpUMepHI 3ajad BUJIA (PgT ), JUIsL KOTO-
pBIX B3sATHIE (hopMasbHO Ge3 peryaspusanun seMeHThl (A%, 1) = ( gf;?c, ugf;%), s=1,2,... me
obecneunsaloT ycroiuusoro nocrpoenns MITP. Teopema 1 maxoauT HpuioXKeHue IpU PeIleHIH
HeyCTOﬁqHBbIX HeJIMHEeHHBIX 3a/ia9 OIITUMaJIBHOI'O praB.HeHI/IH.

JINTEPATYPA

1. Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R. Nonsmooth Analysis and Control Theory. Graduate
Texts in Mathematics. V. 178. New York: Springer-Verlag, 1998.

2. Sumin M.I. Parametric Dual Regularization in a Nonlinear Mathematical Programming // Advances in
Mathematics Research. V. 11. NewYork: Nova Science Publishers Inc., 2010. Chap. 5. P. 103-134.

3. Cymun M.J. IlapamerprdecKasi IBOJICTBEHHAs PETYJISIPU3AIAS B OITHMHU3AIMN, OITHMAIBHOM YIIPABJIECHIN
n obpartHbix 3ana4dax // Becrauk TamGosckoro yrusepcurera. Cepusi EcrecrBennble n rexundeckue Hayku. 2010.

T. 15. Bem. 1. C. 467-492.

BJIATOZJAPHOCTMU: Pa6ora Beinossena npu dhunancosoii noep:kke PODOU (koj mpoexk-
ta 12-01-00199-a) 1 Muno6puayku PP B pamkax rocysapcTBEHHOIO 3a/[aHUsI Ha OKA3aHUE YCJIyT
B 2012-2014 rr. (mmdp 3assku 1.1907.2011).

Kanatov A.V. ON STABLE SEQUENTIAL KUHN-TUCKER THEOREM IN NONLINEAR PRO-
GRAMMING AND ITS APPLICATIONS

The stable with respect to the errors in the initial data sequential Kuhn—Tucker theorem in nondif-
ferential form for parametric nonlinear mathematical programming problem in a Hilbert space and the
possibility of its application for solving unstable optimal control problems are discussed.
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VIIK 517.9
ON SOME EXTENSIONS OF OPTIMAL CONTROL THEORY
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Key words: impulsive control; extension of classical theory.

Avoiding bringing sophisticated technique and without going into the rather complex details
we describe the problem of extensions of the classical control theory on the introductory
level.

It is a fact that classical calculus of variations problems might not have a smooth or even a
continuous solution, although they are still of physical interest. Here, we shall focus namely on the
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discontinuous case. The following problem of variational calculus illustrates how discontinuities
may emerge.

1
Minimize / z(t)\/1+ (2)2dt,
0

subject to  x(0) =Ry, (1) = Ra.

(15)

This is the problem of finding a minimal area of the surface of revolution formed by a membrane
stretched over two parallel disks of radiuses R; and R, respectively. The application of the
Euler-Lagrange principle leads to a second order differential equation and a boundary problem,
which does not have a solution for some values of the parameters R;, and Rs. The physical
meaning of such situation is as follows: if numbers R;, and Ry are sufficiently large (or
the distance between the two disks sufficiently small), the membrane exists and the surface
of revolution is smooth. But, as the distance between the two disks increases, the membrane
stretches and, at some point, breaks: at that very moment, the smooth and continuous solution
fails to exist. However, this does not mean that the surface of revolution does not exist at all.
Clearly, it is the surface of the union of the two disks aimed at each other and the segment [0, 1].
This means that the solution x(t) will be Ry for t=0, Ry for t=1 and 0 for t€(0,1) and,
thus, it is discontinuous. In other words, the solution will be impulsive.

In the framework of his famous program David Hilbert suggested to extend calculus of
variations theory in order to cover and to formulate such degenerate situations by giving a strict
mathematical meaning to non-classical solutions. He expressed confidence that “every problem
in the calculus of variations has a solution, provided that the term ’solution’ is interpreted
appropriately”. This desideratum spawned a number of developments on the extension of the
classic calculus of variation by various authors. For the rich history of this issue, we refer
the reader to the article (B. Mordukhovich, Existence of optimal controls. J. Soviet Math.
7 (1977), 850-886). Here, we only point out to important contributions on extensions of the
classical calculus of variations made by H. Lebesgue, L. Tonelli, L. Young, N.N. Bogolyubov,
R.V. Gamkrelidze, V.F. Krotov, R.T. Rockafellar, V.M. Tikhomirov, J. Warga, among others.

With the advent of Optimal Control and the Pontryagin’s maximum principle in the fifties,
the theory of discontinuous solutions for variational calculus advanced significantly gradually
giving shape to the area of Impulsive Optimal Control. So, what is the subject of the impulsive
control theory? This theory covers and contains in itself, as a limiting case, a wide class of
degenerate calculus of variations and optimal control problems for which classical continuous
solutions fail to exist. This theory provides not only the way how to interpret the concept of
solution but also the procedure to find it. The basic idea is to extend the conventional concept
of control as well as the concept of trajectory. The usual bounded and measurable control can be
replaced, for instance, by a Borel measure. Then, the trajectory becomes a function of bounded
variation. This approach already suggests a reasonable extension for linear systems which covers
many actual applications.

Let us give a simple example to illustrate how impulsive controls arise by providing an
extension to the following calculus variation problem

1
Minimize / z2dt, (16)
0

subject to t=v, veR
z(0)=0, z(1)=1.

So, we need to minimize the area under the curve z2(-) where the arc z(-) is to reach the
point z =1 starting from zero at t=0. Then, there is obviously no solution to this problem in

2548



ISSN 1810-0198. Bectuuk TTY, T. 18, BoIm. 5, 2013

the class of continuous trajectories due to the fact that any minimizing sequence of trajectories
converges pointwise to the discontinuous function z(¢)=0 as t€[0,1) and z(1)=1.

Then, how could a solution be defined? A solution can be found by extending the set
of admissible trajectories admitting that the trajectory might have now discontinuities. Or,
equivalently, this means to introduce impulsive controls instead of the convenient integrable
control v from L;. For problem (16), it is appropriate to consider Borel measures as impulsive
controls. Any conventional control v(-) can be considered as an absolutely continuous measure
p such that dp=wv(t)dt. However, there will exist also other controls, like Dirac’s measures, that
cannot be reduced to conventional ones.

Thus, the conventional problem is extended by enlarging the class of trajectories/controls,
being problem (16) rewritten in the impulsive context as follows:

Minimize / z2dt,
[0,1]

subject to dr=dp, peC*([0,1]),
2(0)=0, z(1)=1.

Here, any admissible trajectory x(-) is already a function of bounded variation and so may
exhibit discontinuities. The notation dx =du is understood in the integral sense, or, in terms
of measures, it means that the Borel measure generated by z(-) is absolutely continuous with
respect to p and it is its Radon-Nykodim derivative with respect to g (which, in this particular
case, is equal to unity).

It is easy to see that solution to the extended problem exists and the optimal trajectory
is z(t)=0 for t<1, and z(1)=1. Moreover, the fact that Borel measures are being used as
extended controls, together with the weakly* sequential compactness of the unit ball in C*([0, 1]),
implies that the described extension procedure is successful in ensuring the existence of solution
for large classes of linear control problems. (For example, whenever the total variation fol lv(t)|dt
is to be minimized.)

Thanks to the weak* convergence of measures, the extension procedure is rather clear when
the dynamical system is linear in (z,v), like in the example (16). However, the complexity of
the extension will increase when more general dynamical control systems are considered:

&= f(z,u,t) + g(z,t)v, veK, (17)

where wu is usual (classical) bounded control, the function f defines conventional control dyna-
mics, v is an unbounded vector-valued control, g some matrix-valued function, and the set K,
a convex closed cone.

How to describe the solution in this case? The extension procedure introduced above can not
be applied any longer since the passage to the weak™ limit is not correct for non-linear systems.
Indeed, this is shown by the following simple example. Let K =R2. Consider the dynamical
system with vector-valued control v=(vy,v2):

@ = xv) + 2?vg,  x(0) = 1.

If we try to extend this system to the class of Borel measures, regarding bounded total variation
fol |v(t)|dt < const, we will see that, to every control, i.e., to every vector measure, there cor-
responds an entire integral funnel of trajectories x(-), any of which may claim to be called a
solution to the extended dynamical system.

Thus, in the non-linear case, Borel measures are simply not enough to construct all achievable
trajectories and controls. But, as we will see later, the new design control turns out be a Borel
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measure plus a certain family of usual measurable functions, which we will designate by associated
family. The reason to introduce these associated functions is to select a single trajectory from
the integral funnel and, thus, they can be regarded as controls acting at the discontinuities of
the trajectory.

In the present report, we aim at extending the classic calculus of variations and/or optimal
control problems by introducing a new type/design of impulsive controls. We will provide appro-
priate theorems for the existence of solution in constrained impulsive control problems.
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Kapamsun J1.1O., Tlepeiipa @.J]I. O HEKOTOPBIX PACIHIMPEHUAX TEOPUN OIITUMAJIb-
HOT'O YITPABJIEHUA

Bes npuBnedenusi ciioKHON TeXHUKH W m30erast HOCTATOYHO TPYIOEMKHUX JeTajeil Mbl OMUCHIBAEM
1pobJieMy paCIIUPEeHnil KJIACCUIECKO TEOPUHN yIIPABJIEHUs HA BBOJHOM YDPOBHE.

Karoueswie caosa: UMITYJIbCHOE YIIPDaBJICHUE; PAaCITUPEHUE KJTACCUYECKOMN Teopuu.

VIIK 517.977.1

PABHOBECHBIE PEIIIEHISI B OJHOVI HEAHTATOHUCTUYECKOI
MMO3UINOHHON INP®PEPEHIINAJIBLHOI UTPE ABYX JINIL

© A.®. KieiiMeHOB

Karuesvie cao6a: HEAHTArOHUCTUYIECKAs MMO3UIMOHHAA quddepeHnnaabaas urpa; BeKTOP-
Hble KPDUTEPUN; NHTErPAJIbHbIE KPUTECPUN.

B paccmaTpuBaemoit urpe ¢ mpocToit AUHAMUKON KpUTepuii KauecTBa MepBOro UTI'POKa MPe/I-
CTaBJISETCS CYMMOW TEPMUHAJBHOIO W MHTErPAJIBLHOIO LJIEHOB. BTOpOil MI'POK MMeeT BeK-
TOPHBIN KpuTepuii KadectBa. [Ipeanonaraercs, 9To NepBBI UTPOK AEHCTBYET B KJIacce IO-
3ULNUOHHBIX KOoHTpCTpareruii [1, 2], a Bropoit — B Kiacce anucrtbix crpareruil. Ilpeiioxkens
HOHATHASA TapaHTHPOBAHHOI'O BBIATPBINIA IIEPBOTO UI'DOKA W MHOXKECTBA IapaHTHUPOBAHHBIX
BBINTPBIIIEH BToporo urpoka [3, 4]. JlaHo ompemesieHne paBHOBECHOTO DEIIEHUST WIPHI HI-
IIIEBCKOT'O THIIA. YCTAHOBJICHA CTPYKTypPa TaKUX PEIICHUIt.

JlunaMuKa UTPBI OIUCHIBAETCS yPABHEHUEM
t=u+v, z,u,vER? x(th) =20 (1)

rje = — as30BbIil BEKTOD; YIPABICHUS U M U CTeCHEHBI orpanmdeHusMu ||ul| < p, ||v]| <p, p>
> 0; [to, V] — 3aaHHBIl OTPE30K BPEMEHH.
OyHKIMOHAJIBI KAYECTBA UTPOKOB MMEIOT BHLI:

9
I = |lz(V)|| + /w(T)Hu(T) + o(7)||2dT — min, (2)
9
I = (—|lz(¥) — all, /w(T)HU(T) +v(7)|*dr) = maz, (3)

to
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